python - Using groupy and subplots with pandas dataframe -


i have dataframe object time series data in multiple columns (see below). trying make graphic subplots each of columns in dataframe each subplot has 12 boxplots, 1 each month.

i have used following code just make subplots dataframe before (but bar not boxplots),

labels = df.columns.values fig, axes = plt.subplots(nrows = 3, ncols = 4, gridspec_kw =  dict(hspace=0.3),figsize=(12,9), sharex = true, sharey=true) targets = zip(labels, axes.flatten()) i, (col,ax) in enumerate(targets):     pd.dataframe(df[col]).plot(kind='bar', ax=ax, color = 'green') 

but not work when use groupby object in place of dataframe

grouped = df.groupby(df.index.month) labels = df.columns.values fig, axes = plt.subplots(nrows = 3, ncols = 4) targets = zip(labels, axes.flatten()) i, (col,ax) in enumerate(targets):     grouped[col].boxplot(ax=ax, color = 'green', subplots =false) 

the problem boxplot cannot called on 'seriesgroupby'

but if use df.plot.box(by = df.index.month or df.boxplot(by = df.index.month) directly in plot loop (in place of making grouped object separately, first) grouping doesn't seem recognized.

does 1 have suggestions? thanks!

edit example data:

               res01      res02      res03     res04      res05      res06 1981-01-31 -16.571927  -4.051575  -8.865433 -0.858423  41.831455 -14.569453    1981-02-28 -14.672908  -2.004894  -6.151469 -0.448101 -30.476155 -13.572198    1981-03-31 -10.588504  -1.079251  -3.057215 -0.897639 -19.407469  -6.936018    1981-04-30 -18.132814  -1.438858   0.028866  0.388591 -24.435158  -8.880159    1981-05-31  -8.190266  -2.175105  -4.326701 -1.089722 -13.286928 -13.530322    1981-06-30  -7.857190  -2.861348  -5.046409 -0.013585 -17.134277 -18.153491    1981-07-31  -0.882391  -4.497572  -9.914211 -1.115400 -27.628329 -33.412025    1981-08-31  12.876021  -4.969259 -11.849937 -1.205588 -29.825922 -36.093600    1981-09-30 -43.434015  -8.681070 -14.143496 -4.701924 -32.357578 -25.945754    1981-10-31  38.656449   3.055204   3.088694  1.425666  12.881002  -7.261655    1981-11-30  -3.455937  -2.136963  -4.393510  0.472263  10.560834 -11.224297    1981-12-31  -2.923868  -2.006733  -1.667986 -0.460742  -8.663085 -12.022059    1982-01-31  19.625548  -2.127550  -4.044511 -0.447382  27.524403  -8.551865    1982-02-28 -12.424200  -1.931246  -6.055349 -0.448398 -29.979264 -13.166926    1982-03-31  35.249772  -2.416680  -6.029210 -0.661215 -47.206552 -24.267880    1982-04-30 -55.008877  -7.160744  -9.331341 -1.040474 -42.029073 -32.618620    1982-05-31 -17.349030  -3.067463  -6.511664 -0.892260 -40.803273 -29.355429    1982-06-30  -5.710025  -2.519162 -15.885825 -1.664557 -36.476341 -43.840351    1982-07-31 -30.790685  -8.042895 -12.381517 -1.339010 -38.542642 -53.612233    1982-08-31   4.263036   1.270455 -13.225027 -1.431894 -29.160338 -36.575128    1982-09-30 -17.206044 -14.336086 -13.276423 -1.316164 -32.316961 -43.796818    1982-10-31  -5.164960  -6.247522 -12.369959 -1.045498  12.716187 -29.489328    1982-11-30 -25.543948  -2.648465  -5.598642 -0.554379  12.033847 -12.507718    1982-12-31  -2.971802  -1.982072  -1.225803 -0.335575  -7.452425 -10.182204    1983-01-31  29.917477  -3.224031  -7.680435 -0.701457  43.068696 -11.812835    1983-02-28   4.998955  -3.281333 -12.630952 -0.867328 -47.758882 -30.902821    1983-03-31 -21.483914  -3.219957  -7.321552 -0.756839 -50.798885 -29.858194    1983-04-30 -23.288018  -2.411159  -5.212307 -0.626141 -49.477692 -22.813129    1983-05-31   0.317828  -3.181573  -6.915676 -0.855810 -21.701865 -23.165239    1983-06-30 -23.914567  -7.788987 -18.696691 -2.082176 -35.968441 -50.015002    1983-07-31 -21.452370  -6.447321 -14.399266 -1.514856 -35.645412 -49.081801    1983-08-31 -14.721837  -7.266818 -14.439923 -1.499819 -47.237557 -52.978016    1983-09-30 -18.532760  -3.905781  -7.398113 -0.729630 -16.512127 -23.390976    1983-10-31  62.864704  -5.903833 -13.910222 -1.143347  21.336868 -26.468803    1983-11-30 -11.050188  -5.180171 -12.654286 -1.186503  24.885744 -22.581720    1983-12-31  -9.576725  -6.114298  -7.761357 -1.048323 -23.590444 -37.646843    

afaik, if group df have either apply aggregate (reducing) function or call .groups return dict group keys , corresponding indexes each key. if want plot 12 subplots

iiuc may try way (using seaborn module):

ax = sns.boxplot(data=df, x=df.index.month, y='res01') 

enter image description here

subplots:

labels = df.columns.values fig, axes = plt.subplots(nrows = 3, ncols = 4, gridspec_kw =  dict(hspace=0.3),figsize=(12,9), sharex = true, sharey=true) targets = zip(labels, axes.flatten()) i, (col,ax) in enumerate(targets):     sns.boxplot(data=df, ax=ax, color='green', x=df.index.month, y=col) 

enter image description here

ps i'm not sure though correctly understood goal